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1. Introduction to Regression Analysis

* What is Regression?

* Method for exploring the
relationship between two

continuous variables.
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1. Introduction to Regression Analysis

* Whatis Regression?

* Method for exploring the
relationship between two 1

continuous variables.

Richness

* The predictor variable, X predicts
the response of the response 4
variable, Y.

* The regression line is the “best 1970 1980 1990 20 200 0
Year

fit”




1. Introduction to Regression Analysis

* Example: Genetic diversity vs.
geographic distance from
Africa (Prugnolle et al., 2005)
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1. Introduction to
Regression Analysis

* Regression noun

* Why the term “Regression”?

* Historical context from
-rancis Galton’s work on
neight between fathers and
sons (regression toward
mediocrity)
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Significance, Volume: 8, Issue: 3, Pages: 124-126, First published: 25 August 2011, DOI: (10.1111/j.1740-
9713.2011.00509.x)



2. Types of Regression Models

Simple Linear Regression Multiple Linear Regression
* Model the relationship * The average value of the
between a predictor variable, response variable, Y, is

assumed to be a linear
combination of the predictor

variables, X;, X, X,

coey

X, and a response variable, Y.

Yi=a+ B1X1; + 06X + - + X + &

& NN(O, 0'2)

Yi = o + IBXL + &
EiNN(O,O'Z)



2. Types of Regression Models

Quadratic Regression: Yi = a+ [1Xy; + ,[)’ZXZZJ- + &

Polynomial Regression:  Y; = a + [ X;; + ,BZXZZJ- + ,Bngji + BnXni + &




3. Simple Linear Regression Components
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Linear Model

Yi — (X-l- ﬁXl + gl gl NN(O, 0-2) 8 R*=085, P <0001

6_

Equations for each observation

_ 2 >
yi=a+ fx; + & & ~N(0,0°) 4
v, = a+ fx, + & & ~N(0,02%)
: .

= a+ Bx, + € g2 ~N(0, g2 . | | | |
In pxn n 3 (0,0%) 000 025 050 075 1.00



Linear Model
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Linear Model
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Residuals

20+

&= Yi— Vi

* Residuals are the difference >
between observed and predicted
values 107

* Describes what is not explained
by the model

25 5.0 75 10.0



Residuals

Ei "’N(O,O'Z) 201

e \Variance, g4, describes the
variation of observations around =
the regression line

101

* Standard Deviation, o, describes
the average deviation from the
regression line
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4. Fitting a Regression Model

Residuals: £« = Y — X X ﬁ

e -
_sle= [6 & ¢ | x '22 Sum Squared
& = EES 152 =3 3 Residuals in Matrix
' € Form
L Cn 4

Z- — (Y — X :B)t X (Y ~X . ,B) Optimize with

Ordinary Least
Squares (OLS)

d
ap ((Y -X- lg)t(y_x . 3) ==2X" (¥ =X - B) Take derivative with respect to f3

—2X* (Y =X - f) =0 Settozeroand solve for 8

XY = (X*X)p Equation to estimate parameters

g = (XXX)"1Xty Equation to solve for estimated parameters



4. Fitting a Regression Model

f= (X xX)"Tx Xt XY
y=XXxp
y=X x (X! xX)7!t x X¢

H is the hat matrix

XY



Linear Model: Identity Matrix (n x n)

Assumptions:

* Diagonal elements equal 1 and specify that the variance of each residual is 1 times c”2

* Off-diagonal elements equal 0 and specify that the covariance between different
residualsis O

* Correlations are zero



Linear Model: Variance-Covariance Matrix

0°{x1} o 0{Xg, X )
c%{X} = : g

O-Z{xn:xl} 02{:xn}

(‘:fl g’ - 0
oc%{e} =Cov| ?|=c%I=|: -~
£, 0 - g2



Linear Model: Residuals

e=y — y EiNN(O,O'Z)
y=H XY e~ N(0,0°% X1
e=y —H XY

e=(I—H) XY



Maximum Likelihood Estimation (MLE)

* MLE finds the “best fit” through the data using ther&og—likelihood function:
n 1
In (e, By, 0] = —51n(270%) = > (3 — 9)°
i=1

2 202

* How?
* Maximizing the log-likelihood function by minimizing the Sum of Squared Errors:

SSE =| ) (i = 91’
=1




How’s the fit?

* Sum of squared errors (SSE) is a A,El
measure of unexplained variability. . /{

n
SSE = E(yi — )2 1/
=1

H
L
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How’s the fit?

* Sum of squares for regression * Total sum of squares (SST) is a
(SSR) is a measure of explained measure of total variability.
variability.

n n
SSR= ) (i - 7)? SST = ) (i = 7)?
i=1 =1

SST = SSR + SSE




5. Model Significance

* Model Outputs:

* Test whether the slope of the relationship is zero or not

HO:,B1=O Hl:ﬁl-‘#()

PN —= O = PN

Richness

1970 1980 1990 2000 2010 202
Year



5. Model Significance

call:
Im(formula = Richness ~ Year, data = df)
* Positive
relationship Residuals: _
bet Min 1@ Median 3Q Max
etween ~1.02461 -0.33602 0.03834 0.28930 1.25274
Richness and
Year Coefficients:
Estimate Std. Error t value Pr(G|t])
. (Intercept) -1.237e+02 9.429e+00 -13.12 <2e-16 ***
Strong evidence Year 6.202e-02 4.729e-03 13.12 <2e-16 ***

against null

N T E i Signif. codes: 0 “¥**' 0.001 **** 0.01 *** 0.05 *.” 0.1 * * 1

slope =0 Residual standard error: 0.4681 on 47 degrees of freedom
Multiple R-squared: 0.7854, Adjusted R-squared: 0.7809
F-statistic: 172.1 on 1 and 47 DF, p-value: < 2.2e-16




6. Interpreting Results

* Example: Net availability in
market vs. average annual
landings (Munguia-Vega et al.
2020)

* R2=0.744

* p-value =0.0013
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6. Interpreting Results

 Example: Turbidity vs. Total 800.00 -
Suspended Solids (Mumtaz et —
al., 2011)
% 600.00 - . =
=2 50000 -
« R2=0.88 E 2 5
400.00 - ® e
300.00 ~/°

* p-value <0.05

200.00 -
I I I I I I I
20000 30000 40000 SO000C GODOO 70000 800.00

» Turbidity = 118.08 + 0.832*TSS Total suspended solids



6. Interpreting Results

Example: Modelled vs. measured values of TSS and NTU (Prior et al., 2020)
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6. Interpreting Results

Example: Modelled vs.
measured values of TSS
and NTU (Prior et al.,
2020)

Averaging improves
accuracy (i.e., higher R?),
model performance, and
bias

Intercept  Sample Size, n r RMSE RPD MNB (%)

TSS ~319.760 60 0.93 30.7 3.6 42
Intercept  Sample Size, n r RMSE RPD  MNB (%)

Averaged TSS _319.775 20 097 218 5.0 1.5
Intercept  Sample Size, n e RMSE RPD MNB (%)

Turbidity _328.016 60 085 446 25 2.9
Intercept  Sample Size, n re RMSE RPD MNB (%)

Averaged Turbidity 35913 20 093 309 3.5 1.2




/. Key Assumptions

* Linear relationship between X
andY

* Errors are independent
* Erroris normally distributed

* Homoscedasticity (equal
variance)

non-normal

correlated errors

not identically distributed

https://r.qcbs.ca/workshop08/book-en/intro-linear-

models.html




8. Limitations and Practical Considerations

(-

* Extrapolation issues:

* Difficult to make predictions ~ :

beyond the range of observed /ﬁ,{.mple ‘?outllers ' cormlated,

data __ linear features,
regression — /

e Influence of outliers:

* Caninfluence the intercept
and slope

* Interpretation pitfalls:
e Correlation not causation

https://www.kaggle.com/discussions/genera /431681




8. Limitations and Practical Considerations

4 data sets having

* Anscombe’s nearly identical mean,
Quartet variance, correlation,
* Importance of linear regression line and

visualizing data coefficient of determination

https://in.pinterest.com/pin/729935052119746525/



Quiz

* Why do we square the errors?

* To account for positive and negative deviations that could potentially
cancel each other out

* What is the mean value of y when x equals zero?
* The estimate of the intercept

* What is the difference between simple linear regression and linear
regression?
* Simple linear regression models the relationship between a single X and
single Y variable.

* Linear regression can model the relationship between a single X and
multiple Y variables.



Questions?




	Slide 1: Simple Linear Regression
	Slide 2: About
	Slide 3: Outline:
	Slide 4: Data Types
	Slide 5: Data Exploration
	Slide 6: 1. Introduction to Regression Analysis
	Slide 7: 1. Introduction to Regression Analysis
	Slide 8: 1. Introduction to Regression Analysis
	Slide 9: 1. Introduction to Regression Analysis
	Slide 10: 2. Types of Regression Models
	Slide 11: 2. Types of Regression Models
	Slide 12: 3. Simple Linear Regression Components
	Slide 13: Linear Model
	Slide 14
	Slide 15
	Slide 16: Residuals
	Slide 17: Residuals
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Maximum Likelihood Estimation (MLE)
	Slide 24: How’s the fit?
	Slide 25: How’s the fit?
	Slide 26: 5. Model Significance
	Slide 27: 5. Model Significance
	Slide 28: 6. Interpreting Results
	Slide 29: 6. Interpreting Results
	Slide 30: 6. Interpreting Results
	Slide 31: 6. Interpreting Results
	Slide 32: 7. Key Assumptions
	Slide 33: 8. Limitations and Practical Considerations
	Slide 34: 8. Limitations and Practical Considerations
	Slide 35: Quiz
	Slide 36: Questions?

